Marvel Comics, Propensity Modeling, Regression Modeling

Recipe 013: Marvel Comics Propensity Score

FerraraTom

How crazy would it be if I told you Howard the Duck and Old Man Logan are closer to each other in skill sets than they are to any other Marvel characters?  Or how about Thor and Dr. Octopus are lookalikes as well?  Let’s answer these questions together by wrangling some readily available data.


 

008

 


 

001

If I’ve learned anything from my career in data science it’s this: 80% of the work is data gathering and etl work, and 20% is analysis.

Nothing holds truer to this statement than finding data of Marvel characters skills set, on a normalized scale.  In this data story I’ll be using data from Marvel Contests of Champions (power index levels, health and attack) and the Marvel Battle Royale (a twitter fan poll of greatest superheroes).

A few more variables I’ll need to calculate around the results of the Marvel Battle Royale Twitter Fan Poll:

Total votes per each round

Average Total votes

A flag for if they were higher than average total votes per marvel character

This flag I’ll use as my dependent variable and my independent variables will be the Marvel Contest of Champions statistics.

What will this do?  This will predict the likelihood a Marvel Character would receive higher than the average total votes in the Marvel Battle Royale.

Once this is calculated I’ll receive an output of coefficients which I can apply to the rest of the Marvel Characters whom weren’t in the Marvel Battle Royale to create a propensity score.


 

002

Now let’s back track a little bit and see why I’m going with a propensity model as opposed to a grouping by opinion.  I.e. Let’s put all the top attackers in the same category.

The top 3 characters based on Attack are Rocket Raccoon, Spider-man (Symbiote), and Blade.

In the above histogram, if you look all the way to the far right you’ll notice they are the data points on their own little island.


 

 

003

Well what if I just grouped everyone by Health?  This data visualization looks more promising but mostly likely there would overlap on the other attributes and you wouldn’t be able to implement this successfully.


 

004

The power index by definition could be suitable but from the top 3 selected on power index I can tell this rating wasn’t an index in the vein of what I would typically use an index for (time-series forecasting) and it looks to be similar to the Pokemon Go Combat Point System, the ability to use their full potential.


 

005

One use of a propensity score is to create similar groups, based on the likelihood of performing a behavior.

In this case Doctor Octopus and Thor (Ragnarok) statistically the same in the Marvel Contest of Champions skill set.  For those of you want to go down and interesting rabbit whole, you can find YouTube videos on why Doctor Octopus should be in a demi-god tier.

This propensity score approach literally put Doctor Octopus in the same tier as a demi-god!


 

006

Medusa by power index alone would be close to Thanos but factoring all skill sets, she is statistically closer to Gwenpool, Cable, and Nightcrawler than she is to the Mad Titan.


 

007

Now for the crazy but statistically significant section.  Howard the Duck (I’m hoping he gets a show on Disney+) and Old Man Logan are a propensity score match.

An example like this where many begin to argue in data science, when does subject material expertise come into play?  We can argue significance forever, on any topic, but we can agree on all Marvel Champions have a value if played correctly.


006

009


 

005

010


003_008

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s