Classification Tree, E-Sports, K-Means Clustering, Logistic Regression, NBA2k, nintendo, Overwatch, Propensity Modeling, Regression Modeling, Super Mario, Tree Based Models

TBCC 2019 Player One, Power Ups, & Probabilities: Panel Recap

012


001.png


This panel was held on: Saturday, August 3, 2019 at 3 PM – 4 PM
And here was the pitch:
Join the data science debate of the highest critically acclaimed video games vs the nostalgia of games we grew up. The data science team at Pancake Breakfast: A Stack Of Stats will be serving up supporting data and driving the discussion for both sides of the debate. Panelists will debate greatest video game of all time or overrated!
The Panelist were myself and Stephen (an indie game developer).  Obviously Steve had the advantage going into this debate but it was really fun and the audience was very engaged, probably one of our best Q&A sessions of all time.
015

Video Game Recommendation Engine – This is how we do it

These are data science panels and we started off this panel with a video game recommendation engine.  I had Stephen fill out a survey prior to the panel and from his results I built a recommendation model, with the goal of selecting games he has not played (he’s played a lot of games, so not an easy task) and would rate above average.

002

How are we going to build this recommendation?  Through Propensity scoring!

A propensity score is an estimated probability that a data point might have the predicted outcome.

  • One of our panelists completed a survey and had to rank video games they have played
  • Their responses were linked to our ancillary data (critics score, user score, and genres)
  • Our model shot out a score between 0 and 1. The closer to 1 the more likely this game would be enjoyed by the panelist.

003


 

Video Game Recommendation Engine – The Output

004.png

For this panelist, the survey told us this about their gaming preferences:

The value User Score more than the Critics Score.

Their preferred genre is Action Adventure.

Their preferred platform is the PS2.

005


Video Game Debate: Overview

006

On the screen will be a video game, with some profiling data.

Panelist will debate the impact, perceived and replay value of the featured game.

Crowd will decide who made the better argument.

This is the meat of the panel., on the screen is also the IGN review headline and rating, Stephen and myself would take turns and argue if it deserved it’s ranking.


Goldeneye 007

007

Stephen went first and argued that Goldeneye does not deserve this high of rating and his key point was on the replay value.  I attempted to argue on to value it at time of release.  The crowd sided with Stephen.


Pokémon Gold & Silver

008

I went first this round and argued for the rating, this was a very pro Pokémon crowd.  Stephen brought up good points on where he thinks the series should go and adding another region is not the answer.  The crowd sided with Me.


Ultimate Marvel vs. Capcom 3

009

Stephen chose to argue for this game, I wanted to throw a curve-ball in this debate.  It would have been very obvious if we chose Marvel vs Capcom 2, too easy.  I argued that it wasn’t even the best in the series, and the best in the series is actually X-men vs Street fighter.


Halo Combat Evolved

010

Stephen was on team Halo for this one, I love Halo as well, but the crowd did not.  That was a shock to us but maybe Halo doesn’t have replay value?  Or everyone is getting tired with the series.


Battle Dome: Overview

011

Two games go in… only one comes out

Panelists will argue for a game, they cannot both argue for the same game

The crowd decides who had the best argument

This was fun and challenging section of our panel.  I won’t go into details on this section but I do want to try something out.  As test to see who is interacting with my page by reading the data stories, I have a special giveaway.

Here are the rules, you must have an Instagram account. You must be following my Instagram account: @pancake_analytics.

To enter you need read through the battle dome section, screen shot your favorite match-up and post it to instagram.

In this post I want you tag @pancake_analytics and caption the post with “Who do you have in this Battle Dome match-up?”.

This giveaway will end on December 31st, 2019 and the winner will receive a Game-stop Gift card from me.  For to use on your next video game purchase in the new year!

Here’s the disclaimer I have to post:

Per Instagram rules, we must mention this is in no way sponsored, administered, or associated with Instagram, Inc. By entering, entrants confirm they are 13+ years of age, release Instagram of responsibility, and agree to Instagram’s term of use. Good luck!!!!!

Here’s the battle dome match-ups:


012


013


014


I want to personally thank everyone who attended the panel in Tampa, at the Tampa Comic Convention.  I look forward to meeting again in 2020.


003_008

K-Means Clustering, Logistic Regression, nintendo, Propensity Modeling, Regression Modeling, Super Mario

TBCC 2019 Smash Brothers, Segmentation & Strategy: Panel Recap

012


003


This Panel was held on:

Friday, August 2, 2019 at 7:30 PM – 8:30 PM

During the Tampa Bay Comic Convention 2019, held at the Tampa Convention Center.

The Panelists were:

Tom Ferrara (@pancake_analytics) , Kalyn Hundley (@kehundley08), Andy Polak (@polak_andy)

001

I want to take a quick moment to discuss the panelists.  I love giving as many different point of views as possible to these data science panels.  Without this variety of point of views it’s more of a lecture and less of a discussion.  This mix of panelists gave the audience the data science view, the tech industry view and the biological sciences view.  Best part about this is Smash Brother brought us all together.


Changing the Tier Conversation

004.png

One of the main objectives of this panel was getting a discussion going on tier selection in Smash and how do we base tier selection in data science, and how do we validate our findings through one of the best players in the game.

A k-means cluster uncovers trends within our Smash Brothers data to understand the relational similarities and differences on key in game attributes.

The more clusters the clearer our picture becomes and the deeper we can understand the pros and cons of each main selection.


005.png

A brief overview of a k-means cluster:

  • Standardize your variables
  • Analyze your elbow curve
  • Validate your clusters

Treat each game release as new product launch or a change in the market.

You would re-score your data, to understand the current market and you’re able to migrate and understand how the meta-game has changed.


006

We end up with five unique clusters:

Floaters:

This group is the slowest by run speed and lightest by weight.

Jack Of All Trades:

They are middle group on everything, there is no distinct trend.

Dashers:

Like the Jack of All Trades group but faster.

Air Tanks:

Fast in aerial attacks and the heaviest of the characters.

Speedsters:

This group is the fastest and the lightest.


007

propensity model is a statistical scorecard that is used to predict the behavior of your customer or prospect base. Propensity models are often used to identify those most likely to respond to an offer, or to focus retention activity on those most likely to churn.

So who should be your main?  In this segment I rely on industry knowledge as well (ZeRo’s tiers as dependent variable).   I’ll build propensity score with the following independent variables:

  • Change in air acceleration
  • Base air acceleration
  • Base speed in the air
  • Base Run Speed
  • Character Weight
  • Ultimate Smash Bros. Cluster
  • Wii-U Smash Bros. Cluster

008


What makes these three stand above the crowd?

The are middle ground on weight, fast air accelerators.

What are the differences between the three?

Wario has a slow run speed.

Palutena is the lightest.

Yoshi is the middle ground of this group.


The Curious Case of Ganondorf

009

Ganondorf has more in-common with Jiggly Puff than he does Bowser.

The reason being is he’s quicker and can adapt well in aerial attacks and in falling than Bowser can.

On the flip-side of this I can also say Bowser more accurately represents how he’s viewed from the super Mario franchise, in Super Smash Bros. Ultimate.


Game Time: Name that segment: Overview

010

I personally feel one of the best ways to reinforce learning is through a game.  For this panel I decided to reinforce the k-means segmentation and wanted volunteers to guess the segment 3 characters on the screen fall into.

Here was the overview:

5 Volunteers

On the screen will be 3 characters

All 3 characters belong to the same segment

Volunteers will do their best to convince the panel of which segment the characters fall into:

  • Floaters
  • Jack of All Trades
  • Dashers
  • Air Tanks
  • Speedsters

For participating volunteers receive a fabulous prize.

For this particular game the prize was an amiibo of their choice that works with Smash Ultimate for the Nintendo Switch.


I want to personally thank everyone who attended the panel in Tampa, at the Tampa Comic Convention.  I look forward to meeting again in 2020.


003_008

Marvel Comics, Propensity Modeling, Regression Modeling

TBCC 2019 Avengers, Algorithms, and Analytics: Panel Recap

012


002


This Panel was held on:

Friday, August 2, 2019 at 9 PM – 10 PM

During the Tampa Bay Comic Convention 2019, held at the Tampa Convention Center.

The Panelists were:

Tom Ferrara (@pancake_analytics) , Kalyn Hundley (@kehundley08), Andy Polak (@polak_andy)

013

 

I want to take a quick moment to discuss the panelists.  I love giving as many different point of views as possible to these data science panels.  Without this variety of point of views it’s more of a lecture and less of a discussion.  This mix of panelists gave the audience the data science view, the tech industry view and the biological sciences view.  Best part about this is the avengers brought us all together.


003

When I pitched this panel the idea was what happens when a data scientist gets hold of the infinity gauntlet?  Pictured above is a visual representation of how I’m going to use each stone.

Use the Time Stone to predict the box office sales for the MCU and determine the top influencers for success.

Use the Power Stone to eliminate low hanging fruit.

Use the Soul Stone to uncover the underlying attributes of the marvel universe.

Use the Space Stone to transport the marvel universe to their closest match.

Use the Reality Stone to show you the marvel universe in a new light, perfectly balanced.

Use the Mind Stone to convince you this matching worked.


Time and Power Stones: What is influencing the MCU box office success?

004.png

I waked through those in attendance the output of regression model I built to unlock the the key influences of the Marvel Cinematic Universe and their relation to box office sales.

Considered influencers:

  • Rotten Tomatoes Scores (Critic and Audience)
  • Movie Release
  • Time since last MCU release
  • Solo Movie Releases
  • Was Iron Man in the movie?

Two Key Influencers stand out:

Having Iron Man in an MCU Movie drives in $100.5MM

The further along in the series drives in at least $216.8MM.  Story Development matters here’s the statistical proof!


Soul and Space Stones: Refitting the Marvel Power Scale

005

During this panel I walked the crowd through the output of a second machine learning algorithm, a propensity score.

Ingredients in the batter:

  • Marvel Contests of Champions (MCC) Power Index Levels
  • MCC Health
  • MCC Attack
  • Marvel Battle Royale (MBR) Twitter Poll:
  • TTL Votes per round, Avg TTL Votes

Flipping the pancakes:

Predict the likelihood twitter would vote for a character

Re-purposing this score to apply it to characters not in the MBR Twitter Poll


Reality and Mind Stones: Perfectly Balancing the Marvel Universe

006

This approach goes beyond ranking by attack, or defense.  This approach takes all those attributes together as well as the fan opinion.

If you only look at attack… you get skewed results

If you only look at defense… you get skewed results

A little bit of good… a little bit of crazy…

Old Man Howard the Duck?

Doctor Octopus the Demi-God?


Marvel Rapid Fire: Marvel Analytics Comparisons

007.png

This was one of my all time favorite segments out of all the comic cons I’ve had the pleasure of paneling at.  Quickly I would show the audience an analytics technique and show them the Marvel equivalent.  I think this technique is very effective in reinforcing our learning and opening up data science to a new audience.

Everything we just went through were machine learning techniques

Machine Learning is the Taskmaster of Data Science

Learns from past data, trains, and attempts to apply this training to new data

When something new is introduced it takes time to catch up


A/B Testing and Incremental ROI is the plot of Civil War

008


A neural network is Ultron… learns from observational data & figures its own solution

009


Dr. Strange ran a logistic regression to find out the odds-on Titan

010


Into the Spider verse was the perfect implementation of a random forest

011


Game Time: Marvel Team-Up: Overview

012


One of the best ways to reinforce learning is through a game.  During this panel I wanted to reinforce the learning from the propensity score.

I asked for 5 volunteers.  On the screen were 3 marvel characters.  2 characters on screen were look-a-likes (statistically speaking).  Volunteers did their best to convince the panel of which two characters should “Team-Up” or in other words identify the 2 statistically closest characters.

For participating all volunteers received a hero-clix figure of their choice.


I want to personally thank everyone who attended the panel in Tampa, at the Tampa Comic Convention.  I look forward to meeting again in 2020.


003_008

Marvel Comics, Propensity Modeling, Regression Modeling

Recipe 013: Marvel Comics Propensity Score

logo

How crazy would it be if I told you Howard the Duck and Old Man Logan are closer to each other in skill sets than they are to any other Marvel characters?  Or how about Thor and Dr. Octopus are lookalikes as well?  Let’s answer these questions together by wrangling some readily available data.


 

008

 


 

001

If I’ve learned anything from my career in data science it’s this: 80% of the work is data gathering and etl work, and 20% is analysis.

Nothing holds truer to this statement than finding data of Marvel characters skills set, on a normalized scale.  In this data story I’ll be using data from Marvel Contests of Champions (power index levels, health and attack) and the Marvel Battle Royale (a twitter fan poll of greatest superheroes).

A few more variables I’ll need to calculate around the results of the Marvel Battle Royale Twitter Fan Poll:

Total votes per each round

Average Total votes

A flag for if they were higher than average total votes per marvel character

This flag I’ll use as my dependent variable and my independent variables will be the Marvel Contest of Champions statistics.

What will this do?  This will predict the likelihood a Marvel Character would receive higher than the average total votes in the Marvel Battle Royale.

Once this is calculated I’ll receive an output of coefficients which I can apply to the rest of the Marvel Characters whom weren’t in the Marvel Battle Royale to create a propensity score.


 

002

Now let’s back track a little bit and see why I’m going with a propensity model as opposed to a grouping by opinion.  I.e. Let’s put all the top attackers in the same category.

The top 3 characters based on Attack are Rocket Raccoon, Spider-man (Symbiote), and Blade.

In the above histogram, if you look all the way to the far right you’ll notice they are the data points on their own little island.


 

 

003

Well what if I just grouped everyone by Health?  This data visualization looks more promising but mostly likely there would overlap on the other attributes and you wouldn’t be able to implement this successfully.


 

004

The power index by definition could be suitable but from the top 3 selected on power index I can tell this rating wasn’t an index in the vein of what I would typically use an index for (time-series forecasting) and it looks to be similar to the Pokemon Go Combat Point System, the ability to use their full potential.


 

005

One use of a propensity score is to create similar groups, based on the likelihood of performing a behavior.

In this case Doctor Octopus and Thor (Ragnarok) statistically the same in the Marvel Contest of Champions skill set.  For those of you want to go down and interesting rabbit whole, you can find YouTube videos on why Doctor Octopus should be in a demi-god tier.

This propensity score approach literally put Doctor Octopus in the same tier as a demi-god!


 

006

Medusa by power index alone would be close to Thanos but factoring all skill sets, she is statistically closer to Gwenpool, Cable, and Nightcrawler than she is to the Mad Titan.


 

007

Now for the crazy but statistically significant section.  Howard the Duck (I’m hoping he gets a show on Disney+) and Old Man Logan are a propensity score match.

An example like this where many begin to argue in data science, when does subject material expertise come into play?  We can argue significance forever, on any topic, but we can agree on all Marvel Champions have a value if played correctly.


006

009


 

005

010


003_008

nintendo, Regression Modeling, Super Mario

Recipe 010: Mario Kart Game-play Improvement Controller Trials

logo

Before I dive into this week’s data story, let me state why I love the Nintendo Switch.  I personally feel there’s a need for video games to be a social event, and couch co-op is a must have feature.  The Nintendo Switch offers several games which meet this need.

My family loves playing video games and most of all we love playing video games together.

Most of the Nintendo games I’ve grown up on and have played over the years, Mario Kart by far is one of my favorites.  I’ll admit my wife shows me how it’s done.


001


002


003

What I do find interesting about the Nintendo Switch is the joy con controllers, there’s a learning curve (but a huge improvement on the Wii-mote) and most veteran gamers prefer an alternative.

One alternative is the wireless controller, very similar to the X-box controller format.  I did pick up the Yoshi version for my wife and she loves it and personally feels it improves her game-play.

I’d thought it was time to put this notion to the test, what impact if any does a wireless controller has on game-play performance versus using a joy con.

Mario Kart seemed like the logical choice for this is experiment, it’s a multiplayer game, you can standardize your users (via ride type and modifications), and performance is measured in a continuous variable of points.

004


005

A total of 8 trails were ran under these conditions:

-Standard Kart

-Standard Wheels

-Standard Flyer

-Mushroom Cup

-50 cc length race

-2 gamers

Half through the trial one gamer switched to the wired controller (Test group) while the other gamer stayed on the single joy con (Control group).

Results were documented, and the etl. process began, points scored each race would be used as the key performance indicator.

I next ran a linear regression (great for evaluating an A/B test), with my dependent variable being the points scored after the event (introducing the wired controller) the two independent variables: Treatment and Pre Points Scored.

006


007.png

In this model I wasn’t concerned with the r-squared value or the significance level of each variable.  The sample data was not large enough, this was closed circuit small market test.

The model itself did show to be significant, which is a good indicator I can continue with the results.  Evaluating my Q’s graph, I see the model fits well, the trend goes through all the data points.

In my summary fit I notice there is a positive relationship between treatment (group) and post points scores.  At first glance this says you improve your Mario Kart game-play performance if you play with a wireless controller.

To complete this story I want to know my upper confidence level to be able to know by how many points and is this enough to move me up the rankings.

Using a wired controller has the potential to increase a gamers point performance by over six points each race.

The average points differential between race placement is 1.2 points.  This 6-point increase is enough to move you roughly 4 places, depending on your historic placement.

008.png


009

What have we learned from diving into the Mario Kart Data?

The controller you play with matters, switching to a traditional wired controller can potentially improve your point score by 6.5 points,

which depending on your average race placement can move you up 4 places in the final standings.

Observing the CPU controlled racers, Shy Guy performed the best with an average final placement of 2.8.  The heavy class overall was the weakest group but without Bowser, it could have been worse.  Bowser’s average final placement was 4th.

 

After you have consumed this meal, I hope you take these findings and enjoy your next Mario Kart Grand Prix.  Also as always enjoy the featured pancake recipe below!


006

010


005

011


003_008

Board Games, Logistic Regression, Regression Modeling

Recipe: 008 Likelihood a Board Game Is Universally Loved

logo

For this week’s analysis I’m taking a different approach to the introduction.  I reached out to @missionboardgame to write the forward.  They are a couple from Turkey who tries their best to inspire people to join board game community.  With out further ado here is there overview of the modern board gaming climate:

We think a successful modern board game should include the following features:

✔️Your decisions should have an impact on the game progress.
✔️Minimal randomness.
✔️No player elimination as possible as there can be throughout the game.

In addition to those, theme, artwork and mechanics are also significant for our decisions while purchasing board games. Therefore, our favorite game is Robinson Crusoe: Adventures on the Cursed Island. It is a cooperative survival game where you are trapped on a deserted island. Each decision you have made previously has an outcome afterwards. The harmony between the theme and the rules is perfectly arranged so that you feel very integrated to the game. By this way, every action you take seems meaningful and logical. Also we love feeling the cooperation among us since we are usually 2 players. – Mission Board Game

36607436_1332042043597675_3622509673829105664_n


001


002


003

Countless nights I’ve played board games among friends and family.  Every new year’s eve my family and I play Monopoly.  A few reasons: the game-play length, the amount of players, and the simplified game-play.  I have 5 siblings, so saying it’s difficult to find a game for all of us to play is an understatement.

The reasons why we enjoy board games is an interesting topic.  Is it the theme of the game?  Is it the amount of players required?  Has the game received universal praise from critics alike? Is it a common game most households own, and we grew up playing?

All the above-mentioned variables I’ll throw into a logistic regression model and use the Bayes theory of probabilities, to determine the probability of a board game player will rank a game higher than the average score.

During the first read I see the model is statistically significant based on a z score of less than .05.   A few things stand out to me immediately:

1.) Not all variables have a positive relationship to a highly scored board game

2.) There are some strong social elements going on here (i.e. the longer the play the higher the impact may imply games which encourage discussion are rated higher)

3.) Fantasy themed board games are not ranked high (I have a D&D and video games impact theory)

004


005

Before jumping into the positive relationships, I’d like to touch briefly on the negative relationship independent variables.

1.) Fantasy Theme: I included this variable in the model expecting to see a very high positive correlation, but I was very wrong.  To quote Rick and Morty : “Sometimes science is more art than science.”  In the spirit of the quote, I’ll assume there are threats to the fantasy themed board games genre, in the form of Role-Playing Video Games.  The storytelling in this medium has progressed some much in last decade it out paces the anything a board game could offer.

In other words the target audience is leaving.

2.) Major of voters:  This variable is all about the amount of users who share their ranking.  A rule of thumb for rankings, reviews and ratings is those who go through the effort of expressing their opinion either love or hate the product.  The upper and lower confidence levels mirror themselves, because of this skew-ness.

006


007

Next, I’ll discuss the positive relationship independent variables (focusing on those with the highest impact):

1.) Board games with an average game-play of at least two hours or more has the highest positive impact on a user rating a board game score above average.  What makes a game have a long game-play?

Multiple reasons: more players involved, more game-play mechanics, and mostly importantly more discussion.  The soul of any good board game is bringing people together.

2.) The second highest impact comes from the average score displayed from Game Board Geek.  The reason behind this is users see this rating first before submitting their rating.  Think of it like the Rotten Tomatoes effect, people want to feel like they have universally accepted opinions.  Take the beginning of this data story for example, I mentioned Monopoly is a family tradition of mine, this potentially could have swayed your opinion on this board game.  Possibility you could rate this higher than a game, say is fantasy themed, based on this model output.

For your own reference, this model has an accuracy rate of above 70%

008.emf009


010

What have we learned from diving into the Board Game Data? 

Board games are most successful when they encourage the spirit and soul of “game night”, a gathering of friends and family discussing and enjoying each other’s time.  Adventure and exploration themes are the majority of the top ten highly successful board game genres.  The longer the game-play does not mean the game is like pulling teeth or the pace is slow.

It is more of an indicator of the amount of players required and the story telling the game has in driving a great game night experience.

 

After you have consumed this meal, I hope you take these findings and enjoy your next game night.  Also as always enjoy the featured pancake recipe below!


006

https://boardgamegeek.com/


005

011


003_008

disney, Mickey Mouse, Regression Modeling, Theme Parks

Recipe: 006 Walt Disney World Parks and Resorts Revenue Influencer

logo

It all started with a mouse.  This mouse is turning 90 this year and Mickey Mouse has made his impact on society.  To celebrate, what better meal to cook us this week than Walt Disney World Data?  I’ll be challenging myself to

identify influencers on the Parks and Resorts Division’s yearly revenue.


001


002


003

004

With Mickey Mouse turning 90 years old this year, what better meal to cook us this week than Walt Disney World Data?  I’ll be challenging myself to identify influencers on the Parks and Resorts Division’s yearly revenue.

My first approach was to identify what happens during the year the revenue occurs?

The number of Animated Movies released by Disney

The number of Animated Movies featuring Disney Princesses

The number of Attractions add at all four main theme parks and then parsing this information out by the individual park

The first run was not an effective model: most of the variability in the data was not accounted for, and there were no independent variables of significance.

So my next approach was how do I capture word of mouth on movies and attractions?  Secondly, how do I incorporate when Disney starts charging admission to children (currently 2 yrs and younger, enter the parks for free)?

To knock out two birds with one stone, I settled on let me test a rolling 3-year average of all behaviors.  The results were very favorable, 67% of the variability is explained and I have interesting independent variables of significance to make a telling data story


005

If you’re a subscriber to this blog and enjoy the Stacks of Stats, you’ll recognize my preference for Q graphs.

There’s some curls at the tails but most of the data fits well, so there won’t be a need to run a more complex model.

Let’s take a bite into the initial read before accessing the financial impact of all these fun Disney variables.

I’ll caveat this, significance is in the eye of the beholder, and is up to interpretation of the  storyteller and data scientist.  The first read shows the 3-year average of total park attractions having the highest relationship to revenue and inversely the amount of attractions opened at EPCOT has significance but a negative impact on yearly revenue.

I’ll dive more into the individual impacts later, but I want to utilize my upper and lower bounds.


006

The output of this model shows the impact in millions USD.  Analyzing the cone, this is where our fairy tale begins to take shape.

Potentially the average amount of attractions introduced at the all four major parks can drive in $1.6 million USD.

With the Magic Kingdom driving most of this impact:

New attractions added at the Magic Kingdom can drive in $4.5 million USD.

The average amount of the Disney Princess movies does have more of an impact than factoring Disney releasing an animated movie as the only criteria.  What’s intriguing is the variability of our upper and lower bounds, there is a possibility there could be a loss of $50.6M.

007

What could be driving the inverse affect?  Multiple reasons:

1.The quality of the movie releases

2.The presence or in this case non-presence of a meet and greet at the theme park

3.The global economic climate (Less international travel impacts this!)


008

What have learned from diving into the Walt Disney Data?

There’s a reason WDW is investing in new IP based rides at Epcot and Hollywood Studios: they’ve been launching the rides outdated with their audience and they drive the lowest impact currently on yearly revenue.  I anticipate Epcot to see a steady growth on impact when Guardians of the Galaxy and Ratatouille open and a few years have passed.

Finally a Princess Animated Movie drives in 1 million USD more than a regular animated move release.

009

What could be the reasoning?  I’d guesstimate rides introduced at the Magic Kingdom (drives in +4.5M USD) is having a downstream affect on the Princess impact.  Most Princess interactions take place at the Magic Kingdom.

After you have consumed this meal, I hope you take these findings and with Mickey Mouse a Happy 90th Birthday. J  Also as always enjoy the featured pancake recipe below!


005

010

006

https://disneyworld.disney.go.com/


003_008